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Introduction 

“Preventing the sun's radiation from entering through 
the roof can make a significant contribution to 
comfort and reduction in cooling bills/needs.” 

     

    From: Sustainable Building Sourcebook  

    Chapter: Energy    
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Definition 

•Radiant barrier are aluminum foil laminates or aluminized 
synthetic film sheets.  

 

•The foil is typically laminated to either paper, oriented strand 
board (OSB), or plywood; or aluminum is vacuum-deposited over 
polymer sheets or boards (e.g., foam board). 

 

•The laminates of films have at least one low emittance surface of 
0.1 or less (ASTM Standard C1313, 2010). 
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•Radiant barriers reduce the transfer of heat energy radiated 
from “hotter” surfaces to “colder” surfaces (e.g., the deck of 
an attic to the attic floor). 
 
 
 
 
 
 
 
 
 
•Among the benefits of installing radiant barriers are energy 
savings, $ savings, and comfort.  4 

(Source: Florida Solar Energy Center) 

Definition 



Radiant Barrier Installations 
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Horizontal Radiant Barrier Truss Radiant Barrier 

Deck Applied Radiant Barrier Draped Radiant Barrier 



Radiant Barrier Installations 
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Horizontal Radiant Barrier Truss Radiant Barrier 

Deck Applied Radiant Barrier Draped Radiant Barrier 

“Truss Radiant Barrier”  

(TRB) 



Radiant Barriers 
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Source: “Radiant Barriers: Performance Revealed” 

September/October 2000 Issue, Home Energy Magazine 



Radiant Barriers 

• Modes of Heat Transfer 

 

 

 

 

 
  (Source: Btubusters) 

 

 

8 

  



9 
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Radiant Barriers 



Radiant Barriers 

• In the studies, the performance of radiant barriers was 
assessed via: 

– Experiments 
• Side by side monitoring of pre- and post-retrofit data. 

– Modeling 
• Mathematical representation of thermal sciences that describe 

the processes that take place.   

• Implemented using computer programming (e.g., FORTRAN). 

– Model/Experiment Validation 
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Radiant Barriers 

• Experiments: Test Houses 
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Radiant Barriers 

• Experimental Results: Calibration (No RB Case) 

   

   Ceiling Heat Flux             Indoor Air Temperature 
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< 3 % < 0.3 oF 



Radiant Barriers 

• Experimental Results: Calibration (RB Case) 

   

   Ceiling Heat Flux             Indoor Air Temperature 
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< 3 % < 0.3 oF 



Radiant Barriers 

• Experimental Results: Effect of Radiant Barriers  
              (~28% Daily Heat Flow Reduction) 
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37.5% 



Radiant Barriers 

• Experimental Results: Installation Comparisons 
 

          Horizontal Configuration vs. Truss Configuration? 

 

15 Slight Advantage for the Horizontal Configuration 

~ 5 % 



Radiant Barriers 

• Experimental Results: Shingle Temperatures 
           Horizontal Configuration             Truss Configuration  
              vs. No RB Case    vs. No RB Case 
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No difference in  

shingle temperature 



Radiant Barriers 

• Experimental Results: Effects of Daily Solar Radiation 
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Radiant Barriers 

• Experimental Results: Effects of Attic Ventilation 
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Radiant Barriers 

• Experimental Results: Effects of Attic Insulation Level 
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42% 

34% 

25% 



Radiant Barriers 

• Verification of Model/Experiments 
 

      

  No Radiant Barrier Configuration           Horizontal Configuration 
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Radiant Barriers 

• Computer Simulations: Climate Influence 
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Radiant Barriers 

• Computer Simulations: Climate Influence 
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Radiant Barriers 

• Computer Simulations: Climate Influence 
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Radiant Barriers 

• Computer Simulations: Climate Influence 
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Climate Sample Station 

Sample 

Summer 

Integrated 

Percent 

Reduction 

(SIPR) 

(%) 

Average 

Peak-Hour 

Percent 

Reduction 

(PHPR) 

(%) 

Humid Subtropical 

San Antonio, TX 

New York- NY 

Atlanta, GA 

34.3 

32.5 

38.5 

35.1 31 

Humid Continental 

Warm Summer 

Topeka, KS 

Indianapolis, IN 

30.0 

30.1 
30.5 46 

Desert 
Las Vegas, NV 

Tucson, AZ 

19.2 

23.0 
21.1 23 

Humid Continental Cool 

Summer 

Minneapolis, MN 

Detroit, Michigan 

25.7 

24.3 
25.0 54 

Steppe 
Pocatello, ID 

Helena, MT 

16.0 

13.7 
14.9 36 

Marine West Coast Astoria, OR 9.6 9.6 ~100 

Mediterranean San Francisco, CA 2.3 2.3 97 

Western High Areas Boulder, CO 19.7 19.7 44 

Tropical Savanna Miami, FL 36.8 36.8 42 

Radiant Barriers 

• Computer Simulations: Climate Influence 
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Radiant Barriers 

• Parametric Analyses: Outdoor Air Temperature 
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Radiant Barriers 

• Parametric Analyses: Mean Hourly Relative Humidity 
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Radiant Barriers 

• Parametric Analyses: Mean Hourly Global (H) Radiation 
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Radiant Barriers 

• Parametric Analyses: Latitude  
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Radiant Barriers 

• Parametric Analyses: Altitude 
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Radiant Barriers 

• Parametric Analyses: Roof Solar Absorptivity 
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Radiant Barriers 

• Parametric Analyses: Radiant Barrier Emissivity   
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Radiant Barriers 

• Parametric Analyses: Attic Airflow Rate   
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Radiant Barriers 

• Parametric Analyses: Roof Slope 
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Radiant Barrier Performance 
Ceiling Heat Flow 
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Radiant Barrier Performance 
Ceiling Heat Flow 
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Radiant Barrier Performance 
Ceiling Heat Flow  
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Radiant Barrier Performance 
 Space Cooling Load  
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Radiant Barrier Performance 
 Space Heating Load  
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Radiant Barrier Performance 
 Space Cooling and Space Heating Load  
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Radiant Barrier Performance 
 Attic Temperature Reductions 
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Radiant Barrier Performance 
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Radiant Barrier Performance 
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Radiant Barrier Performance 



Conclusions 
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• On average, RBs reduce summer ceiling heat flows by approximately 
23 to 45% depending on the insulation level.  Winter ceiling heat 
flow reductions are approximately 40% of the summer values for the 
same insulation levels.   

 

• Space cooling loads are reduced by 6 to 20% and space heating load 
reductions would be approximately 40% of the space cooling load 
reductions for the same insulation levels. When the HVAC ducts 
were placed in the attics, the reductions increased by about 2% 
points. 

 

• DARBs and TRBs would reduce attic temperatures by an average of 
13 oF, while RBs in the HRB configuration would reduce the attic 
temperature by an average of 4 oF 

 

 

  

 



 

THANK  YOU 
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