RESNET 2014

February 24-26, 2014

Beyond Mini-Splits

An Introduction to Variable Capacity Equipment for Whole-House HVAC Designs

Allison Bailes, *Energy Vanguard* Kristof Irwin, *Positive Energy*

Agenda

Preview Perspective Part-Load VRF

Disclaimer

The mention of any product, service or information does not constitute an endorsement, nor implied endorsement. None of these companies are supporting this seminar.

What is VRF?

- •Established heating & cooling technology for commercial and residential applications.
- •Provides for variable capacity operation.

VRF Multi-Split Technology

VRF Multi-Split Technology

VRF Vendors & Industry Dynamism

- Mitsubishi
- →• Daikin
 - Sanyo
 - Fujitsu
 - LG
 - Gree
 - McQuay
 - Johnson
 Conntrols

- Carrier
- Rheem/Ruud
- Frigidaire
- Trane
 - Lennox
 - Goodman
 - Toshiba
- ➤● Samsung

VRF Market Penetration

Perspective

50 Years

50 Years

positive

2055

1955

HVAC Looking Forward...

- Desiccant based evaporative cooling (Especially Liquid Desiccants)
- Thermo-electric heating and cooling
- Quantum Effect devices

Changing Performance

Enhanced functionality. Superior performance.

Not for free

- •Highly engineered systems
- •Specialized materials
- •Complex assemblies
- •Precise tolerances

Changing Client Dynamics

Feedback Loop

Improved Product Performance Increased Consumer Expectations

The New Normal

High Performance

- Comfort
- Health
- Safety
- Durability
- Energy Efficiency

Control Layers & Equipment Loads

One Functional System

What do we want this system to do?

What should it deliver?

- Comfort
- Durability
- Health
- Safety
- Energy Efficiency

Control Strategy

<u>Control</u> flows across a boundary:

- Heat
- Air
- Moisture

Control Layers

Priority Order:

- Bulk Water
 (Rain & Ground, Liquid)
- 1. Air
- 2. Water Vapor
- 3. Thermal

Control Layer Failure

Keep Outside Out & Inside In. <u>Control</u> Exchange.

Control layer failure - All 3 Required

- 1. Something to leak
- 2. Opening
- 3. Driving force

Control Layers are Imperfect

Daily, Hourly Load Variations

Typical Indoor Weather Pattern

Changing Energy Codes

Moisture tolerance and resiliency following similar trend?

There's something happening here

What it is, is very clear

Control & Kaos?

Load & Part Load

Fixed Capacity & Variable Capacity

Load & Capacity

Load

Capacity

3 Types of People

- 1. Those who can do math
- 2. and those who can't.

3 Types of Loads

Extreme Load

Design Load

Part Load

Variable Loads

Austin Climate

Bin Hours - Austin, Texas

Temperature, °F

Austin Climate

Austin Climate

Atlanta Climate

Part Load Hours

Source: HTS Engineering

Dot represents Equipment
Operating Point & Percentage
of Rated Capacity Delivered to
Load (idealized)

Majority of US Market

Dual Capacity

Variable Capacity posi **Inverter Scroll** 100% 0% 4-15% Compressor

VRF & Industry Performance Metrics

AHRI 1230-2010

- Full Load
 - EER
 - COP @47F
 - ■COP @17F
- Part Load
 - IEER
- Heat Recovery
 - SCHE

Performance Metrics

Rated at Full Capacity Conditions

- **EER** Energy Efficiency Rating = Btuh's per Watt
- SEER –<u>Seasonally adjusted; per AHRI formula</u>
- HSPF Heating Seasonal Performance Factor
- COP Coefficiency of Performance = In North America, typically rated for Heat Pumps at 17 & 47 degrees Fahrenheit.

Performance Metrics

Rated at Part-Load capacities (25%, 50%, 75% & 100%)

- IEER Integrated Energy Efficiency Rating; Took the place of IPLV
- **SCHE** Simultaneous Cooling & Heating Efficiency

Efficiency of Heat Recovery at simultaneous 50% heating & 50% cooling

IEER

 $IEER = (0.020 \cdot A) + (0.617 \cdot B) + (0.238 \cdot C) + (0.125 \cdot D)$

Where:

- A = EER at 100% net capacity at AHRI standard rating conditions
- B = EER at 75% net capacity and reduced ambient (see Table 11)
- C = EER at 50% net capacity and reduced ambient (see Table 11)
- D = EER at 25% net capacity and reduced ambient (see Table 11)

(IPLV@0.1,0.5,0.3,0.1)

> 65kBtuh Only

Part load metrics only apply to equipment with capacities > 65kBtuh

VRF HVAC Technologies

VRF Technology

VRF Technology

Outdoor Condensing Units

S-Series 3-5 Tons 1Φ 14x38x54

R2, Y, H2iY 6-24 (30) Tons 3Φ 30x48x65

WR2, WY, 6-24 (30) Tons 3Φ 21x34x43

VRF Outdoor Units

Manufacturer	Lennox	Mitsubishi
Model Number	XP25-036	PUMY-P36
Cooling Cap		
(kBtuh)	35.2	36
Heating Cap		
(kBtuh)	31	40
Pwr Htg (kW)		2.93
Pwr Clg (W)		3.22
Current Clg (A)	LRA 18, RLA 14	15.2
Current Htg (A)		12.9
Dims (WxDxH)	30x39x36 (48)	13x38x54
Weight (Lbs)		287
Sound P (dB(A))	58/73 (min/max)	49/51 (min/max)

Indoor Units

Space Mounted

Ceiling Recessed

Concealed Ducted

Space Mounted

Wall Mounted 6-30kBtuh

Ceiling Suspended 15-36kBtuh

Floor Standing 6-24kBtuh

Wall Units

Trane 4MYW6 9-22 kBtuh

Fujitsu Halcyon ASUxxRLF 7-24 kBtuh

Gree GWCxx 9-36 kBtuh

Floor Standing

LG ARNUxxxCE 7.5-24.2 kBtuh

ľ

Mitsubishi PFFY-PxxNEMU-E 6-24 kBtuh

Panasonic S-xxMR1U6 7-24 kBtuh

Floor Standing

Image Source: Mitsubishi Electronics

Space Mounted: Choices

Ceiling Recessed

4-Way Large Cassette 33"x33", 12-36kBtuh

4-Way Small Cassette 22.5"x22.5", 12-36kBtuh

One Way Cassette 16"x32", 6-15kBtuh

Concealed Ducted

Low (0.2iwc) Medium (0.6iwc) High Static (0.8iwc)

6 - 96kBtuh (1/2 to 8 Tons)

VRF Multi-Split Air Handlers

Panasonic S-xxMM1U6 0.7-18 kBtuh

Daikin FXMQxxPVJU 0.6-4.0 kBtuh

Carrier/Toshiba MMD4 2.5-4.0 kBtuh

Vertical Ducted

BLG

Vertical (Up or Down Flow) & Horizontal Left Air Handler 0.3, 0.5, 0.8 iwc, 12-54kBtuh

Vertical (Horizontal) Air Handlers

Manufacturer	LG	Mitsubishi	DAIKIN
Model Number	ARNU183NJA2	PVFY-P18E00A	FXMQ18PVJU
Cooling Cap (kBtuh)	18	18	18
Heating Cap (kBtuh)	20	20	20
Pwr Htg (W)	0.08	0.18	0.21
Pwr Clg (W)	0.08	0.18	0.21
Current Clg (A)	0.36	1.22	1.6
Current Htg (A)	0.36	1.22	1.6
Dims (WxDxH)	18 x 21.3 x 48.6	17-3/4 x 21 x 42-3/4	39-3/8 x 27-1/2 x 11-3/4
Weight (Lbs)	117	98	80
Sound P (dB(A))	39/41/42	35/35/36	37/41
CFM (L-M-H)	380/480/530	402/485/520	529/582/635
	0.3, 0.5	0.3, 0.5, 0.8	0.2, 0.8
Branch Boxes, Splitters & Joints positive

sample image for reference

VRF: Other Parts

Piping Headers & Joints

PC Connection

Concealed Ducted

Concealed Ducted

Concealed Ducted

VRF and Existing Buildings

- Less intrusive to existing architecture
- Small refrigerant piping instead of large ductwork
- Outdoor installation flexibility

Variable Refrigerant Flow

Linear Electronic Expansion Valve (LEV)

- LEV opens & closes a precise amount w/ each control pulse to its windings
- Thousands of pulses per full open/close
- Precision microprocessor based control

Variable Refrigerant Flow

Inverter Drive

60Hz VAC In

Inverter Circuit: Variable Frequency & Voltage Output

→ Variable Capacity

> 15 – 125 Hz VAC Out

Inverter Circuit: Step 2

$DC \rightarrow AC$

POWERING YOUR FUTURE

DC to AC on Demand

Inverter Drive

15 Hz Low Part Load

125Hz Peak Load

Conventional Comfort

pos

Image Source: Mitsubishi Electronics

VRF Comfort

Image Source: Mitsubishi Electronics

Compressor Motor Current

Compressor Motor Current

Operating Currents

Indoor Unit (A) Outdoor Unit (A) Conventional 3 - 12 20 - 100 VRFZ 0.15 - 6 2-25

Recap: Inverter Benefits

- Precise control & stability of indoor conditions
- Low starting currents
- Long run times
- Reduces compressor cycling
- Improved durability/longevity
- Variable capacity operation
- Rapid ramp up to meet load
- Minimum capacity to as low as
 4% of rated

VRF Space Savings

Space Required to Deliver 20 tons of Cooling

Quiet Operation

Image Source: Mitsubishi Electronics

VRF & Energy Modeling

- Energy Plus
- EnergyPro
- Others using DOE2.1 engine

VRF, Inverter-Drive & Beyond

Pricing Comparison

*GSHP pricing does not include 30% Federal tax credit

Summary

VRF Benefits

- Efficient part-load performance
- o Versatility
- o Comfort/control
- Multiple independent indoor zones
- Quiet operation
- Improved latent control & filtration w/ longer run times
- Reduced need for ductwork & associated duct losses/impacts
- o Easy of installation
- Many units are ventilation compatible
- High reliability/low maintenance

VRF Issues & Concerns

- Market Inertia
- Lack of 3rd party performance data
- Inappropriate industry rating metrics
- Cost
- Installer/Service training & skills
- Complexity
- Power sensitivity
- Supplemental heating integration
- Filtration concerns
- Costly to service/cleaning condenser coils
- Lack of control based on latent (most units)
- Need for supplement dehumidification at low loads

Thank You

