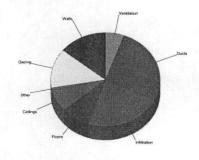
Building Analysis Entire House Example of Manual J.D and S Forms required to be submitted

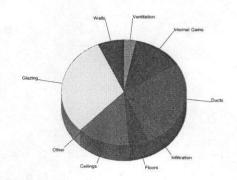
Project Information

For:


Right-Sized Residence

ACCA Manual J Street, Oak Park, IL 60301

305-356。于4年3月5日至今3月1	与事情以前手 令	Design Co	onditions		
Location: Chicago Midway AP, IL Elevation: 617 ft Latitude: 42°N Outdoor:	, US Heating	Cooling	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb)	70 66 30 27.8	75 15 50 34.1
Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	4 - - 15.0	90 16 (L) 73 7.5	Infiltration: Method Construction quality Fireplaces	Simplified Average 2 (Average)	


Heating

Component	Btuh/ft²	Btuh	% of load
Walls Glazing Doors Ceilings Floors	4.3 23.0 17.1 1.7 1.9	6033 5735 359 3310 3632	14.2 13.5 0.8 7.8 8.6
Infiltration Ducts Piping Humidification Ventilation	5.8	9719 11276 0 0 2335	22.9 26.6 0 0 5.5
Adjustments Total		42397	100.0

Cooling

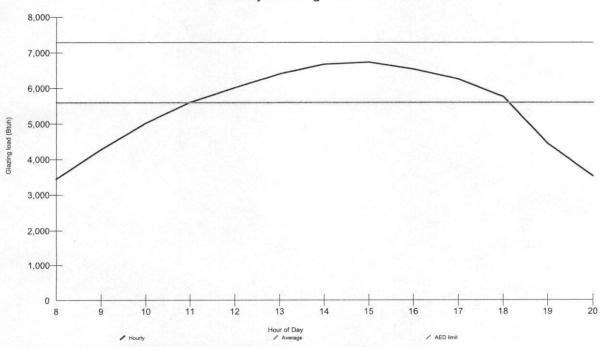
Component	Btuh/ft²	Btuh	% of load
Walls	0.8	1125	6.8
Glazing	20.4	5080	30.9
Doors	7.3	154	0.9
Ceilings	1.1	2098	12.8
Floors	0.4	807	4.9
Infiltration	0.5	914	5.6
Ducts		3638	22.1
Ventilation		519	3.2
Internal gains		2120	12.9
Blower		0	0
Adjustments		0	
Total		16454	100.0

Latent Cooling Load = 4609 Btuh Overall U-value = 0.054 Btuh/ft²-°F

Data entries checked.

AED Assessment Example of Manual J.D and S Forms required to be submitted

Project Information


For: Right-Sized Residence

ACCA Manual J Street, Oak Park, IL 60301

		Design Co	onditions		
Location: Chicago Midway AP, IL Elevation: 617 ft Latitude: 42°N Outdoor: Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	Heating 4 - 15.0	Cooling 90 16 (L) 73 7.5	Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) Infiltration:	70 66 30 27.8	Cooling 75 15 50 34.1

Test for Adequate Exposure Diversity

Maximum hourly glazing load exceeds average by 20.3%.

House has adequate exposure diversity (AED), based on AED limit of 30%.

AED excursion: 0 Btuh

Component Constructions Example of Manual J, $^{\text{Job:}}$ $^{\text{SEG 0314-077W}}$ Entire House Example of Manual J, $^{\text{Job:}}$ $^{\text{Manual J-077W}}$ Forms required to be submitted

Project Information

For:

Right-Sized Residence ACCA Manual J Street, Oak Park, IL 60301

			In dean	11	0
Location:			Indoor:	Heating	Cooling
Chicago Midway AP,	IL, US		Indoor temperature (°F)	70	75
Elevation: 617 ft			Design TD (°F)	66	15
Latitude: 42°N			Relative humidity (%)	30	50
Outdoor:	Heating	Cooling	Moisture difference (gr/lb)	27.8	34.1
Dry bulb (°F)	4	90	Infiltration:		
Daily range (°F)		16 (L)	Method	Simplified	
Wet bulb (°F)		73	Construction quality	Average	
Wind speed (mph)	15.0	7.5	Fireplaces	2 (Average)	

	Area ft²	U-value Btuh/ft²-°F	Insul R	Htg HTM Btuh/ft²	Loss	Clg HTM Btuh/ft²	Gain
n	472	0.065	21.0	4.27	2014	0.80	376
е	234	0.065	21.0	4.27	999	0.80	186
s	467	0.065	21.0	4.27	1996	0.80	372
W	240	0.065	21.0	4.27	1023	0.80	191
all	1413	0.065	21.0	4.27	6033	0.80	1125
n	54	0.350	0	23.0	1251	7.73	421
n	37	0.350	0	23.0	839	11.0	403
е	45	0.350	0	23.0	1035	34.2	1541
S	74	0.350	0	23.0	1705	18.5	1369
W	39	0.350	0	23.0	904	34.2	1347
all	249	0.350	0	23.0	5735	20.4	5080
S	21	0.260	0	17.1	359	7.32	154
	1938	0.026	38.0	1.71	3310	1.08	2098
	1938	0.034	30.0	1.87	3632	0.42	807
	e s w all	e 234 s 467 w 240 all 1413 n 54 n 37 e 45 s 74 w 39 all 249 s 21	e 234 0.065 s 467 0.065 w 240 0.065 all 1413 0.065 n 54 0.350 n 37 0.350 e 45 0.350 s 74 0.350 w 39 0.350 all 249 0.350 s 21 0.260 1938 0.026	e 234 0.065 21.0 s 467 0.065 21.0 w 240 0.065 21.0 all 1413 0.065 21.0 n 54 0.350 0 n 37 0.350 0 e 45 0.350 0 s 74 0.350 0 w 39 0.350 0 w 39 0.350 0 all 249 0.350 0 s 21 0.260 0 1938 0.026 38.0	e 234 0.065 21.0 4.27 s 467 0.065 21.0 4.27 w 240 0.065 21.0 4.27 all 1413 0.065 21.0 4.27 d.27 d.27 d.27 d.27 d.27 d.27 d.27 d	e 234 0.065 21.0 4.27 999 s 467 0.065 21.0 4.27 1996 w 240 0.065 21.0 4.27 1023 all 1413 0.065 21.0 4.27 6033 n 54 0.350 0 23.0 1251 n 37 0.350 0 23.0 839 e 45 0.350 0 23.0 1035 s 74 0.350 0 23.0 1705 w 39 0.350 0 23.0 904 all 249 0.350 0 23.0 5735 s 21 0.260 0 17.1 359 1938 0.026 38.0 1.71 3310	e 234 0.065 21.0 4.27 999 0.80 s 467 0.065 21.0 4.27 1996 0.80 w 240 0.065 21.0 4.27 1023 0.80 all 1413 0.065 21.0 4.27 6033 0.80 n 54 0.350 0 23.0 1251 7.73 n 37 0.350 0 23.0 839 11.0 e 45 0.350 0 23.0 1035 34.2 s 74 0.350 0 23.0 1705 18.5 w 39 0.350 0 23.0 904 34.2 all 249 0.350 0 23.0 5735 20.4 s 21 0.260 0 17.1 359 7.32

Load Short Form Example of Manual Jobs SEG 0314-077W Interest Processing Forms required to be submitted

Project Information

For: Right-Sized Residence

ACCA Manual J Street, Oak Park, IL 60301

		Desigr	n Information	
	Htg	Clg		Infiltration
Outside db (°F)	4	90	Method	Simplified
Inside db (°F)	70	75	Construction quality	Average
Design TD (°F)	66	15	Fireplaces	2 (Average)
Daily range	_	L		, , ,
Inside humidity (%)	30	50		
Moisture difference (gr/lb)	28	34		

HEATING EQUIPMENT

COOLING EQUIPMENT

Make Goodm Trade GOODM Model GCH95 AHRI ref 365390	MAN 0453BX**		Make Trade Cond Coil AHRI ref	Goodman Mfg. GOODMAN SSX160241B* CA*F3636*6D* 4652177		
Efficiency Heating input Heating output Temperature rise Actual air flow Air flow factor Static pressure Space thermostat	800 0.020	Btuh °F	Efficiency Sensible c Latent cool Total coolir Actual air t Air flow fac Static pres	ooling Iling ng flow ctor	, 16 SEER 18720 5280 24000 800 0.050 0.60 0.78	Btuh Btuh Btuh cfm cfm/Btuh in H2O

ROOM NAME	Area (ft²)	Htg load (Btuh)	Clg load (Btuh)	Htg AVF (cfm)	Clg AVF (cfm)
Master Bedroom	240	7575	2618	151	131
Master Bath	112	2734	590	55	30
Master Wic	98	0	0	0	0
Den	150	2507	644	50	32
Dining	129	2095	506	42	25
Kitchen	176	4861	3265	97	164
Living Room	394	9296	4527	186	227
CL 2	34	0	0	0	0
Bedroom 2	192	5733	2242	114	113
Hall	126	0	0	0	0
Bath 2	90	1481	312	30	16
Bedroom 3	198	3780	1232	75	62

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Entire House Other equip loads Equip. @ 1.00 RSN Latent cooling	d M		Example Forms re	010		1
TOTALS		1939	42397	21064	800	800

Worksheet Example of Manual Job: SEG 0314-077W Entire House Example of Manual J.D. SEG 0314-077W And S. Forms required to be submitted

1 2 3 4 5	Exposed wall Room height Room dimensions							Entire 187.0 ft		d	Master Bedroom 31.0 ft 9.0 ft heat/cool 16.0 x 15.0 ft 240.0 ft²			
	Ту	Construction number	U-value (Btuh/ft²-°F)	Or	H ⁻ (Btul	ΓM h/ft²)	Area (ft²) neter (ft)	Loa (Btu		Area (ft²) neter (ft)	Loa (Btu	nd h)
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6		12F-0bw 10D-c 4A5-2oc 12F-0bw 4A5-2oc 12F-0bw 4A5-2oc 11E0 12F-0bw 4A5-2oc 16C-38aw 19A-30bstp	0.065 0.350 0.350 0.065 0.350 0.260 0.065 0.350 0.026 0.0350	n e e s s	4.27 22.99 22.99 4.27 22.99 17.08 4.27 22.99 1.71 1.87	0.80 7.73 11.05 0.80 34.24 0.80 18.46 7.32 0.80 34.24 1.08 0.42	563 54 37 279 45 563 74 21 279 39 1938 1938	472 0 0 234 0 467 0 21 240 0 1938 1938	2014 1251 839 999 1035 1996 1705 359 1023 904 3310 3632	376 421 403 186 1541 372 1369 154 191 1347 2098 807	144 54 0 0 0 0 0 135 20 240 240	90 0 0 0 0 0 0 115 0 240 240	1251 0 0 0 0 0 0 0 493 452	71 421 0 0 0 0 0 0 92 673 260 100
	-> ^ 5													
6		excursion ope loss/gain				6.67			19068	9264	0.00		3438	1761
12	a) In	filtration							9719	914			1611	151
13		oom ventilation al gains:	Occupants Appliances	@ (other	230		4		U	920 1200	0		U	0
	Subtot	tal (lines 6 to 13)	Арриансез	, one					28787	12298			5049	1912
14 15	Less e	external load ransfer ribution cal					39%	30%	0 0 0 28787 11276	0 0 0 12298 3638	39%	30%	0 0 393 5443 2132	0 0 108 2020 598
		oom load uired (cfm)							40063 800	15935 800			7575 151	2618 131

Forms required to be submitted

1 2 3 4 5	Expos	name sed wall height dimensions area				9.0 112.0	14	er Bath 0 ft hea x 8.0 f	t/cool ft	9.0 98.0		ter Wic 0 ft hea x 7.0	t/cool ft	
	Ту	Construction number	U-value (Btuh/ft²-°F)	Or	H1 (Btul		Area ((ft²) neter (ft)	Loa (Btu	ad uh)	Area ((ft²) neter (ft)	Loa (Btu	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross		Heat	Cool
6		12F-0bw 10D-c 4A5-2oc 12F-0bw 4A5-2oc 12F-0bw 4A5-2oc 11E0 12F-0bw 4A5-2oc 16C-38aw 19A-30bstp	0.065 0.350 0.065 0.350 0.065 0.350 0.260 0.065 0.350 0.026	n n e e s s s w w		0.80 7.73 11.05 0.80 34.24 0.80 18.46 7.32 0.80 34.24 1.08 0.42	0 7 0 0 0 0 0	0 0 0 0 0 0	0 149 0 0 0 0 0	0 72 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 98	0 0 0 0 0 0 0 0 0	0 0 0 0 0
6	c) AEC	D excursion								-18				-7
0		ope loss/gain							1061	317			351	140
12	a) In	filtration com ventilation				8. T.			728 0	68 0			0	0
13		al gains:	Occupants Appliances		230		0		J	0 0	0			0 0
	Subto	tal (lines 6 to 13)							1789	385			351	140
14 15	Less t						39%	30%	0 0 176 1964 769	0 0 70 455 135	39%	30%	0 0 -351 0 0	0 0 -140 0 0
		oom load uired (cfm)							2734 55	590 30			0	0

Entire House Example of Manual Job: SEG 0314-077W and S Forms required to be submitted

1 2 3 4 5	Room name Exposed wall Room height Room dimensions			Fo	Den 10.0 ft 9.0 ft heat/cool 10.0 x 15.0 ft 150.0 ft²				Dining 9.5 ft 9.0 ft heat/cool 9.5 x 13.6 ft 128.8 ft²					
	Ту	Construction number	U-value (Btuh/ft²-°F)	Or	H7 (Btul	ΓM h/ft²)	Area ((ft²) neter (ft)	Loa (Btu		Area (ft²) or perimeter (ft)		Load (Btuh)	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
11	G 1 G 4 W 1 G 4 W 1 W 1 W 1 W 1 C 4 C 1	2F-0bw 0D-c A5-20c 2F-0bw A5-20c 2F-0bw A5-20c 1E0 2F-0bw A5-20c 6C-38aw 9A-30bstp	0.065 0.350 0.350 0.065 0.350 0.260 0.260 0.065 0.350 0.065 0.350	n n e e s s	4.27 22.99 22.99 4.27 22.99 4.27 22.99 17.08 4.27 22.99 1.71 1.87	0.80 7.73 11.05 0.80 34.24 0.80 18.46 7.32 0.80 34.24 1.08 0.42	90 0 10 0 0 0 0 0 0 0 150	0	342 0 230 0 0 0 0 0 0 0 0 256 281	0 110 0 0 0 0 0 0	86 0 10 0 0 0 0 0 0 0 128 128	0 0 0 0 0	322 0 230 0 0 0 0 0 0 0 0 0 219 240	60 110 0 0 0 0 0 0 0 0 0 139 53
6	c) AED e	excursion				11-11-11		12-4		-20		E.F.		-19
	Envelop	e loss/gain							1109	. 379		4	1012	344
12		tration m ventilation							520 0	49 0			494 0	46 0
13	Internal	gains:	Occupants Appliance		230 er		0			0	0			0
	Subtotal	(lines 6 to 13)					70.0		1629	428			1506	391
14 15	Less ext Less trai Redistrib Subtotal Duct loa	oution					39%	30%	0 0 173 1802 706	0 0 69 497 147	39%	30%	0 0 0 1506 590	0 0 0 391 116

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Total room load Air required (cfm)

Entire House Example of Manual Job: SEG 0314-077W Entire House Example of Manual J., DMar 17, 2014 S Forms required to be submitted

1 2 3 4 5	Expos	name sed wall height dimensions area					9.0 176.3	26. ft 13.0	chen 5 ft hea x 13.6 f	t/cool ft	9.0 393.8	40.0 ft 22.5	Room 0 ft hea 17.5 f	t/cool t
	Ту	Construction number	U-value (Btuh/ft²-°F)	Or		ΓM h/ft²)	Area (or perin	ft²) neter (ft)	Loa (Btu		Area or perin	(ft²) neter (ft)	Loa (Btu	nd h)
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
11			0.065 0.350 0.350 0.065 0.350 0.065 0.350 0.260 0.065 0.350	n e e	4.27 22.99 22.99 4.27 22.99 4.27 22.99 17.08 4.27 22.99 1.71 1.87	0.80 7.73 11.05 0.80 34.24 0.80 18.46 7.32 0.80 34.24 1.08 0.42	1177 0 10 122 15 0 0 0 0 176 176	107 0 0 107 0 0 0 0 0 176 176	457 0 230 455 345 0 0 0 0 3300 329	85 514 0 0 0 0 0	0 0 0 158 30 203 42 21 0 0 394 394	0 0 0 128 0 139 0 21 0 0 394 394	0 0 0 544 690 595 968 359 0 0 673 738	0 0 0 1022 1027 1111 777 154 0 0 4266 164
6	c) AEC) excursion								-97				-166
		ope loss/gain							2115	961		606	4567	2595
12		filtration oom ventilation							1377	129			2079	195 0
13		al gains:	Occupants Appliances	@ s/othe	230 r		1			230 1200	3			690 0
	Subto	tal (lines 6 to 13)		TO AL		2.58			3493	2520			6646	3480
14 15	Less to						39%	30%	0 0 0 3493 1368	0 0 0 2520 745	39%	30%	0 0 34 6680 2617	0 0 14 3494 1033
	Total req	oom load uired (cfm)							4861 97	3265 164			9296 186	4527 227

Worksheet Example of Manual Job: SEG 0314-077W Entire House Example of Manual J.D. SEG 0314-077W And S Forms required to be submitted

1 2 3 4 5	Room	name sed wall height dimensions area						ft 8.5	CL 2 O ft	t/cool		28.0 ft 16.0 x	oom 2	t/cool
	Ту	Construction number	U-value (Btuh/ft²-°F)	Or	H' (Btul	ΓM h/ft²)	Area (or perin	ft²) neter (ft)	Loa (Btu		Area (or perin	ft²) neter (ft)	Loa (Btu	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
111	3 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12F-0bw 10D-c 4A5-2oc 12F-0bw 4A5-2oc 12F-0bw 4A5-2oc 11E0 12F-0bw 4A5-2oc 16C-38aw 19A-30bstp	0.065 0.350 0.350 0.065 0.350 0.065 0.350 0.260 0.065 0.350 0.026 0.034	n n e e s s s s	4.27 22.99 22.99 4.27 22.99 4.27 22.99 17.08 4.27 22.99 1.71 1.87	0.80 7.73 11.05 0.80 34.24 0.80 18.46 7.32 0.80 34.24 1.08 0.42	0 0 0 0 0 0 0 36 0 34 34	0 0 0 0 0 0 0 36 0 34 34	0 0 0 0 0 0 0 154 0 58 64	0 0 0 0 0 0 0 0 29 0 37 14	0 0 0 0 144 122 0 108 20 192	0 0 0 0 0 132 0 0 88 0 192 192	0 0 0 0 563 278 0 377 452 328 360	0 0 0 0 105 223 0 70 673 208 80
													oxing altis	
6		excursion								-5		35		161
		ope loss/gain							276	75			2359	1521
12		filtration oom ventilation							208 0	20 0			1455	137
13	Intema	al gains:	Occupants Appliances		230 er		0			0	0			0
	Subto	tal (lines 6 to 13)						la la	483	95		E VE	3814	1657
14 15	Less t						39%	30%	0 0 -483 0 0	0 0 -95 0	39%	30%	0 0 306 4119 1614	0 0 73 1730 512
		oom load juired (cfm)							0	0			5733 114	2242 113

Entire House Example of Manual Job: SEG 0314-077W and S Forms required to be submitted

1 2 3 4 5	Room Room	name sed wall height dimensions area					9.0 126.0	ft 31.5	Hall 0 ft hea x 4.0	nt/cool ft	9.0 90.0		th 2 5 ft hea c 12.0	it/cool ft
	Ту	Construction number	U-value (Btuh/ft²-°F)	Or	H ⁻ (Btul	TM h/ft²)	Area or perir	(ft²) neter (ft)	Lo (Bt	ad uh)	Area ((ft²) neter (ft)	Lo: (Bti	
					Heat	Cool	Gross	N/P/S	Heat		Gross	N/P/S	Heat	Cool
6		12F-0bw 10D-c 4A5-2oc 12F-0bw 4A5-2oc 12F-0bw 4A5-2oc 11E0 12F-0bw 4A5-2oc 16C-38aw 19A-30bstp	0.065 0.350 0.350 0.065 0.350 0.065 0.350 0.260 0.065 0.350 0.026 0.034	n n e e s s s w	4.27 22.99 22.99 4.27 22.99 17.08 4.27 22.99 1.71 1.87	7.73	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 215	0 0 0 0 0 0 0 0	0 0 0 68 0 0	0 0 0 68 0 0	0	0 0 0 54 0 0 0 97
6 12 13	Envelor a) In b) Ro Internal Subton Less e Less to		Occupants Appliances	€ @	230		0	30%	451 0 0 451 0 451 0 0 451 0	-9 180 0 0 0 180 0 -180 0	0	30%	611 390 0 1001 0 64 1064 417	-10 178 37 0 0 215 0 266 241 71

Worksheet SEG 0314-077W Entire House Example of Manual J. D and S Savoy Engineering Group Forms, required to be submitted rad to be submitted

						FO	rms	req	uire	ed to	be	sub	mitt	ed
1 2 3 4 5	Expos Room Room	name sed wall height dimensions area					9.0 198.0	16.5 ft 16.5 x		t/cool t				
	Ту	Construction number	U-value (Btuh/ft²-°F)	Or	H7 (Btul	rM n/ft²)	Area (or perin	ft²) neter (ft)	Loa (Btu		Area or perimeter		Lo	ad
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6	TO E LE LE LE	12F-0bw 10D-c 4A5-2oc 12F-0bw 4A5-2oc 12F-0bw 4A5-2oc 11E0 12F-0bw 4A5-2oc 16C-38aw 19A-30bstp	0.065 0.350 0.350 0.065 0.350 0.065 0.350 0.260 0.065 0.350	n n n e e e s s s w w	4.27 22.99 22.99 4.27 22.99 17.08 4.27 22.99 1.71 1.87	0.80 7.73 11.05 0.80 34.24 0.80 18.46 7.32 0.80 34.24 1.08 0.42	0 0 0 0 149 20 0 0 198 198	0 0 0 0 0 129 0 0 0 0 198 198	0 0 0 0 0 549 460 0 0 338 371	0 0 0 0 102 369 0 0 214 82				
6	c)AEC	excursion								45				
	Envelo	pe loss/gain							1718	814	3235			
12		filtration oom ventilation							858 0	81 0				
13	Interna	al gains:	Occupants Appliances	@ s/othe	230 r		0			0				
	Subtot	tal (lines 6 to 13)							2576	895	Ta Carlo			
14 15	Less to						39%	30%	0 0 141 2716 1064	0 0 56 951 281			- N	

1232 62

3780 75

Total room load Air required (cfm)

Project Summary Entire House Example of Manual J,D and S Forms required to be submitted

Project Information

For:

Right-Sized Residence

AČCA Manual J Street, Oak Park, IL 60301

Notes:

Joe Contractor Superior HVAC

Design Information

Chicago Midway AP, IL, US Weather:

Winter Design Conditions

Summer Design Conditions

Outside db	4	°F	Outside db	90	°F
Inside db	70	°F	Inside db		°F
Design TD	66	°F	Design TD Daily range	15 L	°F
			Relative humidity Moisture difference	50	% ar/lb
			worsture difference	34	gr/lb

Heating Summary

Sensible Cooling Equipment Load Sizing

Structure	28787	Btuh	Structure	12298 Btuh
Ducts	11276	Btuh	Ducts	3638 Btuh
Central vent (33 cfm)	2335	Btuh	Central vent (33 cfm)	519 Btuh
Humidification '	0	Btuh	Blower	0 Btuh
Piping	0	Btuh		
Equipment load	42397	Btuh	Use manufacturer's data	У
			Rate/swing multiplier	1.00
Infiltration	on		Equipment sensible load	16454 Btuh

Infiltration

Method	Simplified
Construction quality	Average
Fireplaces	2 (Average)

	Heating	Cooling
Area (ft²)	1939	1939
Volume (ft³)	17450	17450
Air changes/hour	0.47	0.20
Equiv. AVF (cfm)	138	58

Latent Cooling Equipment Load Sizing

Structure	2120	Btuh	
Ducts	1740	Btuh	
Central vent (33 cfm)	750	Btuh	
Equipment latent load	4609	Btuh	
		1	
Reg. total capacity at 0.78 SHR	21064	Btuh	

Goodman Mfg.

Heating Equipment Summary

Make	Goodman Mfg.
Trade	GOODMAN
Model	GCH950453BX**
AHRI ref	3653909

Efficiency	95 /	AFUE
Heating input	46000	Btuh
Heating output	44000	Btuh
Temperature rise	51	°F
Actual air flow	800	cfm
Air flow factor		cfm/Btuh
Static pressure	0.60	in H2O
Space thermostat		

Cooling Equipment Summary

Trade	GOODMA	N		
Cond	SSX16024	11B*		
Coil	CA*F3636	*6D*		
AHRI ref	4652177			
Efficiency		13.2 EER,	16 SEER	
Sensible co			18720	Btuh
Latent coo			5280	Btuh
Total coolin			24000	Btuh
Actual air f			800	cfm
Air flow fac	tor		0.050	cfm/Btuh
Static pres	sure		0.60	in H2O
	ble heat ra	tio	0.78	

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Make

Residential Plans Examiner Review Form J.D. for HVAC System Design (Loads, Equipment, Ducts)

Header Information

		rioddor iiriormatioi		
Contractor:			REQUIRED ATTACHMENTS	ATTACHED
Mechanical license:		or MJ1AE	1 Form (and supporting worksheets): E Form* (and supporting worksheets): formance data (heating, cooling, blower):	Yes No Yes No No
Building plan #:		Manual D	Friction Rate Worksheet:	Yes No Yes No
Home address (Street or Lot#, Blo	ock, Subdivision):	ACCA Manual J Street, Ent	ribution sketch: ire House	Yes No No
HVAC LOAD CALCULA	TION (IRC M1	401.3)		
Design Conditions		Building Con	struction Information	
Winter Design Conditions Outdoor temperature: Indoor temperature: Total heat loss: Summer Design Conditions Outdoor temperature: Indoor temperature: Grains difference: Sensible heat gain: Latent heat gain: Total heat gain:	4 70 42397 90 75 34 gr/lb @ 50% 16454 4609 21064	PF North, East, West Btuh Number of bedr Conditioned floo Number of occi PF PF Windows Eave overhang Btuh Internal shade: Btuh Blinds, drapes, etc.	or area: 1939 ft upants: 4 depth: 0 ft none	Roof
rotal fiedt gain.	21004	Number of skyll	gnis.	1
HVAC EQUIPMENT SE	LECTION (IRC	C M1401.3)		
Heating Equipment Dat	<u>a</u>	Cooling Equipment D	Data Blower Data	<u>a</u>
Equipment type: Furnace, Heat pump, Boiler, etc.	Gas furnace	Equipment type: Air Conditioner, Heat pump, etc.	Split AC Heating cfm:	800
Model: Heating output capacity: Heat pumps - capacity at winter design	Goodman Mfg. GCH950453BX**+ 44000_Btuh	Model;	Goodman Mfg. Cooling cfm: Static pressu Fan's rated ext airflow 23021 Btuh	800 ure: 0,60 in H2O ternal static pressure for design
Heat pumps'- capacity at winter design Aux. heating output capacity:	n outdoor conditions O Btuh	Sensible cooling capacity: Latent cooling capacity:	18121 Btuh 4900 Btuh	
HVAC DUCT DISTRIBL	ITION SYSTEM	M DESIGN (IRC M1601.1)	
Design airflow: Equipment design ESP: Total device pressure losses: Available static pressure (ASP	800 cfm 0.60 in H2O -0.3 in H2O): 0.33 in H2O		232 ft Duct Materials Used 197 ft Trunk duct: 129 ft 177 in/100ft Branch duct: Roun	Sheet metal
I declare the load calculation listed above. I understand the	equipment, equip e claims made on t	oment selection and duct design these forms will be subject to re	n were rigorously performed based on eview and verification.	the building plan
Contractor's printed name:				
Contractor's signature:			Date:	

Reserved for County, Town Municipality or Authority having jurisdiction use.

*Home qualifies for MJ1AE Form based on Abridged Edition Checklist

Duct System Summary Example of Manual J. and Section 15 Parties Forms required to be submitted

Project Information

For: Right-Sized Residence

ACCA Manual J Street, Oak Park, IL 60301

External static pressure
Pressure losses
Available static pressure
Supply / return available pressure
Lowest friction rate
Actual air flow
Total effective length (TEL)

 Heating
 Cooling

 0.60 in H2O
 0.60 in H2O

 0.27 in H2O
 0.27 in H2O

 0.33 in H2O
 0.33 in H2O

 0.178 / 0.152 in H2O
 0.178 / 0.152 in H2O

 0.077 in/100ft
 0.077 in/100ft

 800 cfm
 800 cfm

 429 ft

Supply Branch Detail Table

Name	-	esign Btuh)	Htg (cfm)	Clg (cfm)	Design FR	Diam (in)	H x W (in)	Duct Matl	Actual Ln (ft)	Ftg.Eqv Ln (ft)	Trunk
Bath 2	h	1481	30	16	0.084	4.0	0x0	VIFx	21.3	190.0	st5
Bedroom 2	h	5733	114	113	0.115	7.0	0x0	VIFx	29.5	125.0	st4
Bedroom 3	h	3780	75	62	0.081	5.0	0x0	VIFx	29.5	190.0	st5
Den	h	2507	50	32	0.082	4.0	0x0	VIFx	33.5	185.0	st6
Dining	h	2095	42	25	0.080	6.0	0x0	VIFx	44.0	180.0	st7
Kitchen	C	1633	49	82	0.078	6.0	0x0	VIFx	54.5	175.0	st10
Kitchen-A	C	1633	49	82	0.077	6.0	0x0	VIFx	56.5	175.0	st10
Living Room	С	2264	93	114	0.087	7.0	0x0	VIFx	54.3	150.0	st11
Living Room-A	C	2264	93	114	0.088	7.0	0x0	VIFx	53.2	150.0	st11
Master Bath	h	2734	55	30	0.084	5.0	0x0	VIFx	22.0	190.0	st5
Master Bedroom	h	3787	76	66	0.107	5.0	0x0	VIFx	31.7	135.0	st2
Master Bedroom-A	h	3787	76	66	0.107	5.0	0x0	VIFx	32.3	135.0	st2

Supply Trunk Detail Table

Name	Trunk Type	Htg (cfm)	Clg (cfm)	Design FR	Veloc (fpm)	Diam (in)	H x W (in)	Duct Material	Trunk
st10	Peak AVF	97	164	0.077	470	8.0	0 x 0	ShtMetl	st7
st7	Peak AVF	325	417	0.077	764	10.0	0 x 0	ShtMetl	st6
st6	Peak AVF	375	449	0.077	572	12.0	0 x 0	ShtMetl	st5
st5	Peak AVF	534	556	0.077	708	12.0	0 x 0	ShtMetl	st1
st2	Peak AVF	151	131	0.107	566	7.0	0 x 0	ShtMetl	st4
st4	Peak AVF	266	244	0.107	761	8.0	0 x 0	ShtMetl	st1
st11	Peak AVF	186	227	0.087	850	7.0	0 x 0	ShtMetl	st7
st1	Peak AVF	800	800	0.077	453	18.0	0 x 0	ShtMetl	26 16

	Return Branch Detail Table Example of Manual J.D and S												
Name	Grill Size (in)	Htg (cfm)	Clg (cfm)	TEL (ft)	- DOM: - FOR THE	-		CONTRACTOR OF THE PARTY OF THE		Stud/Joist		edak	
rb2	20x 11	375	449	197.0	0.077	572	12.0	0x	0		ShMt	rt3	
rb5	10x10	206	161	130.5	0.116	590	8.0	0x	0		ShMt	rt1	
rb3	10x10	144	128	126.5	0.120	539	7.0	0x	0		ShMt	rt4	
rb4	6x10	75	62	185.5	0.082	384	6.0	0x	0		ShMt	rt3	

Return Trunk Detail Table

Name	Trunk Type	Htg (cfm)	Clg (cfm)	Design FR	Veloc (fpm)	Diam (in)	H x W (in)	Duct Material	Trunk
rt3	Peak AVF	450	511	0.077	650	12.0	0 x 0	ShtMetl	rt2
rt1	Peak AVF	800	800	0.077	573	16.0	0 x 0	ShtMetI	
rt2	Peak AVF	594	639	0.077	598	14.0	0 x 0	ShtMetI	rt1
rt4	Peak AVF	144	128	0.120	413	8.0	0 x 0	ShtMetl	rt2

Manual S Compliance Report Example of Manual J. Manual J. Manual J. Manual J. Manual S Compliance Report Manual J. Manual J. Manual J. Manual J. Manual S Compliance Report Manual J. Manu

Project Information

For: Right-Sized Residence

ACCA Manual J Street, Oak Park, IL 60301

Cooling Equipment

Design Conditions

Outdoor design DB: 89.6°F Sensible gain: 16454 Btuh Entering coil DB: 77.0°F Outdoor design WB: 73.3°F Latent gain: 4609 Btuh Entering coil WB: 64.1°F Indoor design DB: 75.0°F Total gain: 21064 Btuh Indoor RH: Estimated airflow: 800 cfm

Manufacturer's Performance Data at Actual Design Conditions

Equipment type: Split AC

Manufacturer: Goodman Mfg. Model: SSX160241B*+CA*F3636*6D*

Actual airflow: 800 cfm

Sensible capacity: 18121 Btuh 110% of load Latent capacity: 4900 Btuh 106% of load

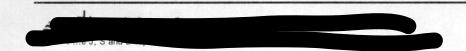
Total capacity: 23021 Btuh 109% of load SHR: 79%

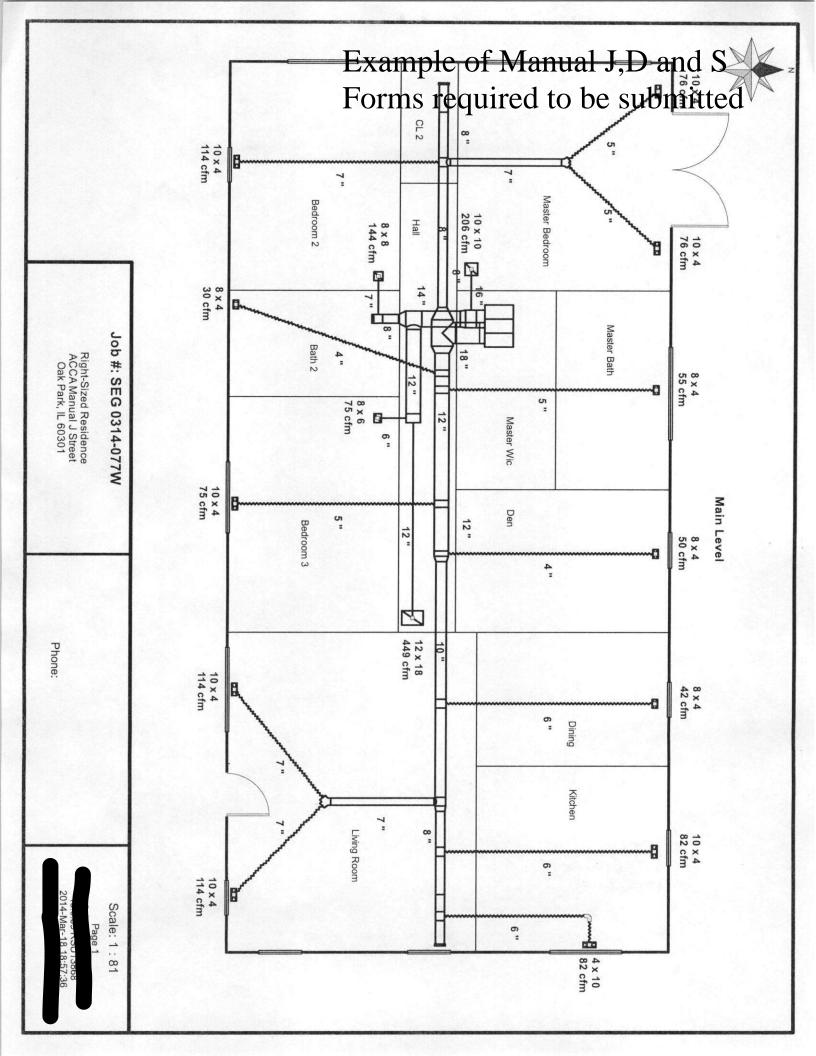
Heating Equipment

Design Conditions

Outdoor design DB: 4.3°F Heat loss: 42397 Btuh Entering coil DB: 60.8°F Indoor design DB: 70.0°F

Manufacturer's Performance Data at Actual Design Conditions


Equipment type: Gas furnace


Manufacturer: Goodman Mfg. Model: GCH950453BX**

Actual airflow: 800 cfm


Output capacity: 44000 Btuh 104% of load Temp. rise: 50 °F

The above equipment was selected in accordance with ACCA Manual S.

Reviewing HVAC Designs for Compliance with ACCA Manual S

by Wes Davis

n approved code change to the 2009 International Residential Code (IRC) clarifies an existing requirement for sizing HVAC equipment: "Heating and cooling equipment shall be sized in accordance with ACCA Manual S based on building loads calculated in accordance with ACCA Manual J or other approved heating and cooling calculation methodologies" (emphasis added).

Air Conditioning Contractors of America (ACCA) Manual S, Residential Heating and Cooling Equipment Selection, provides clear instructions for interpreting and applying original equipment manufacturer (OEM) expanded performance data to select equipment that meets application requirements (heating, sensible cooling or latent cooling) for the applied design conditions used to calculate loads with ACCA Manual J, Residential Load Calculation. It also provides the methodology for identifying the blower airflow design value, in cubic feet per minute (cfm), which is subsequently used per IRC Section 1601.1 with ACCA Manual D, Residential Duct Systems, to calculate duct sizing.

In addition, Manual S sets equipment sizing limits, as summarized in Table 1. These sizing limits ensure

Table 1. Manual S equipment selection sizing limitations.

Equipment	Sizing Limitations	Reference (section)
Furnaces	100–140% of total heating load	2-2
boilers	100–140% of total heating load	2-2
air conditioners	115% of total cooling load*	3-4
heat pumps	115% ¹ or 125% ² of total cooling load*	4-4
supplemental heat (heat pumps)		
electric	based on equipment balance point	4-8
dual fuel	100-140% of total heating load	6-8
emergency heat (heat pumps)	based on local codes	4-9

^{1.} Heat pumps in a cooling dominant climate are allowed to be 115% of the cooling level.

that equipment capacities meet the minimum needs of occupants while preventing the problems associated with oversizing.¹

How to Apply Manual S

Heating, Part One

Manual J heating load calculations produce values, in British thermal units per hour (BTU/h), for selecting HVAC equipment.

Take for example a home that requires a minimum of 56,000 Btu/h of heat to maintain an indoor temperature of 70°F when the outdoor temperature drops in the winter. Based on the sizing limitations (100%–140% of heating load), the furnace must have a capacity between 56,000

Btu/h and 78,400 Btu/h (140% x 56,000). Per the manufacturer's product data given in Figure 1, XYZ model FR 80-036—with an output capacity of 64,000 Btu/h—meets the requirement. Model FR 80-024 does not meet the minimum design temperature, while FR 125-036 has too much output capacity.

Cooling

The cooling loads given in Manual J for the example home are: total cooling = 30,000 Btu/h, sensible cooling = 22,000 Btu/h and latent cooling = 8,000 Btu/h. Based on the Manual S sizing limitations (100%—115% of the cooling load), the air conditioner must have a capacity between 30,000 Btu/h and 34,500 Btu/h (115% x 30,000).

Table 2. Manual D input for design air flow.

Mode of Operation	Requirement	Reference (section)
heating	temperature rise requirement	2-6
cooling	air flow associated with the selected equipment's capacity	3-11

Table 3. Example cooling design conditions.

	Outdoor Conditions		
design temperature	relative design humidity	indoor wet-bulb temperature (at 75°F and 50% Rh)	design temperature
75°F	50% Rh	63°F wet-bulb	95°F

^{2.} Heat pumps in a heating dominant climate are allowed to be 125% of the cooling level.

^{*}The size of the cooling equipment must be based on the same temperature and humidity conditions that were used to calculate the Manual J loads.

When selecting cooling equipment, it is necessary to know the design conditions used to calculate the cooling load. Unlike heating equipment, cooling equipment OEM data offers a range of performance at different outdoor and indoor conditions. The design conditions for the example home are given in Table 3.

Figures 2 and 3 provide OEM expanded performance data for two air conditioners: a 2.5-ton capacity model and a 3.0-ton capacity model. Manufacturers may present this data in a different format, but all should include airflow, entering air wet-bulb temperature, 2 outdoor temperature, and cooling capacities (usually, total and sensible capacities). Note that a slightly different approach is employed when using Manual S to verify cooling equipment selection than to select the equipment. Verification begins by considering the outdoor air temperature and indoor wet-bulb temperature.

The 2.5-ton air conditioner seems like a natural choice for a home with a 30,000 Btu/h cooling load because a 2.5-ton unit has a nominal capacity of 30,000 Btu/h. However, the OEM data for XYZ model AC-30 reveals that the unit does not meet the Manual S total cooling capacity requirement at the design 95°F outdoor temperature and 63°F entering wet-bulb temperature. In contrast, according to the OEM data, XYZ model AC-36 has enough total cooling capacity (31,510 Btu/h) without exceeding the 115-percent limit (34,500 Btu/h). The system's sensible cooling capacity (23,000 Btu/h) also meets the sensible cooling load (22,000 Btu/h) and the latent capacity (total capacity – sensible capacity = latent capacity 8,510 Btu/h) meets the latent load (8,000 Btu/h).

Another critical design element is the volume of air that must flow over the indoor air conditioner coil to achieve the required cooling capacities.³ The furnace manufacturer will provide blower performance data indicating the air flow that the unit can deliver at different levels of resistance. Referring to the fan performance data given in Figure 4 for XYZ model FR 80-036 (1,035 cfm at 0.60 inches water column [iwc], interpolated to 1,050 cfm at 0.58 iwc), the furnace can deliver the airflow required per ACCA Manual D.

Heating, Part Two

Given the duct design value of 1,050 cfm, the final hurdle is to determine if the unit selection meets the furnace requirements for temperature rise.

Referring back to Figure 1, the XYZ model FR 80-036 furnace has an OEM

Sensible and Latent Loads

There are two aspects to the consideration of cooling load: sensible and latent loads. The sensible load is the heat that is measured by a thermometer or a thermostat. This is the "dry" heat one consciously feels. The latent load is the heat associ-

ated with airborne moisture as measured by a hygrometer or humidistat.

When you enter a home whose thermostat shows a cool temperature but which has high latent heat—or relative humidity—the initial feeling is comfort. But as your body adjusts to the temperature you begin to feel sticky, clammy and uncomfortable. You may even feel warm again. This is why two homes with the same thermostat setting can feel very different.

		XYZ Furr	ace Compan	y		
General Data			Inp	ut Capacity	Output	Capacity
		Ef	ficiency		7	
Unit Size	FR60-024	FR 60-036	FR 80-024	FR 80-036	FR 125-036	FR 125-048
Output Capacity					/	
Upflow	48,000	48,000	64,000	64,000	100,000	100,000
Horizontal	48,000	48,000	64,000	64,000	100,000	100,000
Input Btu/h	60,000	60,000	80,000	80,000	125,000	125,000
Temp Rise Range	30 - 60	15 – 45	45 – 75	35 – 65	40 – 70	30 – 60

Figure 1. Furnace product data for XYZ 3.0-ton air conditioners.

				Model A	C-30 with	Coil AC-0	030 (2.5 to	n)			
Evapora	ator Air				Condense	er Enterin	g Air Temp	- DB (F))		
	EME	WB 75 Capacity C		85			95		105		115
CFM	The state of the s			Caj	pacity	Par	Papacity		pacity	Capacity	
	(F)	Total	Sensible	Total	Sensible	Total	Sensible	Total	Sensible	Total	Sensible
	72	34,610	18,190	33,100	17,620	29,830	16,390	28,040	15,730	26,500	15,170
075	67	31,400	22,240	30,000	21,650	28 520	21,040	26,960	20,390	25,300	19,720
875	63	28,620	26,290	27,350	25,680	26,020	25,040	24,640	24,340	23,340	23,340
	57	27,840	27,840	26,820	26,820	25 740	25,740	24,580	24,580	23,340	23,340
	72	35,250	19,090	33,680	18,500	32,030	17,890	30,280	17,260	28,430	16,590
	67	31,990	23,660	30,530	23,060	29,000	22,440	27,380	21,790	25,670	21,110
1000	63	29,300	28,220	28,020	27,560	26,770	26,770	25,540	25,540	24,220	24,220
1000	57	29,020	29,020	27,930	27,930	26 780	26,780	25,540	25,540	24,230	24,230
	72	35,720	19,920	34,110	19,330	32 410	18,710	30,610	18,070	28,700	17,390
4405	67	32,430	25,010	30,930	24,410	29,360	23,780	27,700	23,120	25,960	22,420
1125	63	29,970	29,970	28,850	28,850	27,630	27,630	26,340	26,340	24,950	24,950
	57	30,000	30,000	28,850	28,850	27,640	27,640	26,340	26,340	24,950	24,950

Figure 2. OEM performance data for XYZ AC-30 2.5-ton air conditioner.

				Model A	C-36 with	Coil AC-0	036 (3.0 to	n)			
Evapora	ator Air				Condense	er Enterin	g Air Temp	- DB (F)			
	EMID	75 85			85	295		1	05	115	
CFM	EWB	Car	pacity	Car	Capacity		apacity		acity	Car	pacity
	(F)	Total	Sensible	Total	Sensible	Total	Sensible	Total	Sensible	Total	Sensible
	72	41,680	21,820	39,850	21,110	37,920	20,380	35,900	19,620	33,700	18,810
and the same	67	37,930	24,680	36,260	23,950	34,460	21,200	32,570	24,420	30,540	23,590
1050	63	34,660	29,520	33,120	28,780	-31,510	23,000	29,840	29,160	28,150	28,150
	57	33,650	31,650	32,400	30,400	31,090	27,090	29,680	29,680	28,160	28,160
	72	42,390	20,820	40,490	20,100	38,490	21,360	36,390	29,590	34,130	19,770
	67	38,650	26,290	36,870	25,560	35,000	26,790	33,949	26,010	30,950	25,170
1200	63	35,450	31,740	33,890	30,950	32,300	32,080	30,790	30,790	29,180	29,180
1200	57	35,020	33,020	33,690	31,690	32,290	32,290	30,800	30,800	29,190	29,190
	72	42,910	21,750	40,960	21,030	38,890	22,280	36,750	21,510	34,420	20,680
1050	67	39,150	27,820	37,320	27,080	35,410	28,320	33,410	27,530	31,270	26,680
1350	63	36,200	33,760	34,750	32,750	33,270	33,270	31,700	31,700	30,010	30,010
	57	36,160	34,160	34,760	32,760	33,270	33,270	31,710	31,710	30,010	30,010

Figure 3. OEM performance data for XYZ AC-36 3.0-ton air conditioner.

AHRI Versus OEM Expanded Performance Data

Manufacturers of heating and cooling equipment are responsible for testing and certifying the performance of their products. The Air Conditioning, Heating and Refrigeration Institute (AHRI) produces standards for rating such equipment, but data published in AHRI product directories should not be used because the test conditions simulate a very small geographic area in the U.S. As such, AHRI directories should only be used to compare equipment efficiency ratings—OEM expanded performance data should be used to select properly sized equipment.

design temperature rise range of 35°F-65°F.

Air temperature rise through the furnace depends on the rate of flow through the heat exchanger. If the air flow is outside of the temperature rise range, the equipment may cycle off at safety limits, suffer damage or possibly even create an unsafe condition. Incorrect air flow can cause too much temperature rise (slow-moving air may allow the heat exchanger to become too hot, which can result in warping or cracking of the metal heat exchanger) or too little temperature rise (fast-moving air may cause condensation in the metal heat exchanger, which can result in the production of an acid that can harm or penetrate the heat exchanger).

(continued on page 26.)

			XYZ Comp	any FR 80	-036			
		Air D	elivery –	CFM (w	ith filter)		
Unit Size	Speed	External Static Pressure (inches water column)						
		0.1	0.2	0.3	0.4	0.5	0.6	0.7
FR80 - 024	High	1075	1040	995	945	895	840	760
	Med – Hi	950	925	895	845	795	740	660
	Med - Lo	850	825	780	740	685	635	560
	Low	740	700	650	620	565	5 5	455
FR80 - 036	High	1470	1415	1400	1285	1215	1120	995
	Med – Hi	1315	1280	1235	1298	1115	1035	930
	Med - Lo	1125	1110	1085	1045	995	915	830
	Low	930	9256	910	850	830	770	705
FR80 - 048	High	1700	1685	1640	1580	1545	1450	1380
	Med – Hi	1500	1465	1435	1385	1255	1300	1250
	Med – Lo	1325	1295	1265	1230	1190	1150	1105
	Low	1205	1170	1145	1110	1080	1035	990

Figure 4. Fan performance data.

An air flow rate is acceptable if it yields a temperature rise within the range prescribed by the equipment manufaturer. In our example, 1,050 cfm equates to an acceptable (35°F–65°F) furnace temperature rise of approximately 55°F:

$$\Delta T = Btu/h^4 \div (CFM \times 1.1 \times ACF)$$

55.4°F = 64,000 ÷ (1,050 × 1.1 × 1.0)

where:

 ΔT = temperature difference in the air between the inlet and outlet of the furnace or cooling coil

Btu/h = thermal output capacity of the furnace or cooling system

CFM = volume of air, in cubic feet per minute, moved through the furnace by the blower assembly

1.1 = a physical air constant (derived from the laws of physics)

ACF = altitude correction factor; 1.0 at sea level

Conclusion

This article serves to demonstrate the value of the adopted code revision in ensuring that appropriate load calculations are used as the basis for HVAC equipment selection: one more way that First Preventers can protect the health and safety of building occupants across the country. •

Notes

- Oversizing can lead to health issues associated with excessive humidity; higher costs for equipment and installation labor and materials; greater energy consumption; and more wear and tear on equipment.
- 2. This considers both the temperature and moisture content of the air.
- 3. When the blower moves 1,050 cfm over the XYZ model AC-36 indoor air conditioner coil, it delivers the required cooling capacity. If the airflow value changes, the equipment capacity and performance also change.
- In this case, the actual furnace output capacity of 64,000 Btu/h is used, not the 56,000 Btu/h design capacity from the load calculation.

WES DAVIS is Manager of Technical Services for the Air Conditioning Contractors of America (ACCA), in which capacity he develops HVAC-oriented technical documents, delivers educational presentations and provides technical support to ACCA members.

He is the author of Bob's House, a stepby-step case study in the proper design of a residential HVAC system; serves on several industry technical committees; and coordinated the development of ACCA's Quality Maintenance Standard and Quality Installation Verification Protocols.